翻訳と辞書
Words near each other
・ Koszewo, Podlaskie Voivodeship
・ Koszewo, West Pomeranian Voivodeship
・ Koszhar
・ Koszkania
・ Koszki
・ Koszkowo
・ Koszorów
・ Koszowatka
・ Koszoły
・ Koszta Affair
・ Kosztowa
・ Kosztowo
・ Kosztowy
・ Koszul algebra
・ Koszul cohomology
Koszul complex
・ Koszul duality
・ Koszul–Tate resolution
・ Koszutka
・ Koszuty Małe
・ Koszuty, Słupca County
・ Koszuty, Środa Wielkopolska County
・ Koszuty-Huby
・ Koszuty-Parcele
・ Koszwały
・ Koszwice
・ Koszyce
・ Koszyce Małe
・ Koszyce Wielkie
・ Koszyce, Lesser Poland Voivodeship


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Koszul complex : ウィキペディア英語版
Koszul complex
In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra.
==Introduction==
In commutative algebra, if ''x'' is an element of the ring ''R'', multiplication by ''x'' is ''R''-linear and so represents an ''R''-module homomorphism ''x'':''R'' →''R'' from ''R'' to itself. It is useful to throw in zeroes on each end and make this a (free) ''R''-complex:
:
0\to R\xrightarrowR\to0.

Call this chain complex ''K''(''x'').
Counting the right-hand copy of ''R'' as the zeroth degree and the left-hand copy as the first degree, this chain complex neatly captures the most important facts about multiplication by ''x'' because its zeroth homology is exactly the homomorphic image of ''R'' modulo the multiples of ''x'', H0(''K''(''x'')) = ''R''/''xR'', and its first homology is exactly the annihilator of ''x'', H1(''K''(''x'')) = Ann''R''(''x'').
This chain complex ''K''(''x'') is called the Koszul complex of ''R'' with respect to ''x''.
Now, if ''x''1, ''x''2, ..., ''x''''n'' are elements of ''R'', the Koszul complex of ''R'' with respect to ''x''1, ''x''2, ..., ''x''''n'', usually denoted ''K''(''x''1, ''x''2, ..., ''x''''n''), is the tensor product in the category of ''R''-complexes of the Koszul complexes defined above individually for each ''i''.
The Koszul complex is a free chain complex. There are exactly (''n'' choose ''j'') copies of the ring ''R'' in the ''j''th degree in the complex (0 ≤ ''j'' ≤ ''n''). The matrices involved in the maps can be written down precisely. Letting e_ denote a free-basis generator in
''K''''p'', ''d'': ''K''''p'' ''K''''p'' − 1 is defined by:
:
d(e_) := \sum _^(-1)^x_e_.

For the case of two elements ''x'' and ''y'', the Koszul complex can then be written down quite succinctly as
:
0 \to R \xrightarrow R^2 \xrightarrow R\to 0,

with the matrices d_1 and d_2 given by
:
d_1 = \begin
x & y\\
\end
and
:
d_2 = \begin
-y\\
x\\
\end.

Note that ''di'' is applied on the left. The cycles in degree 1 are then exactly the linear relations on the elements ''x'' and ''y'', while the boundaries are the trivial relations. The first Koszul homology H1(''K''(''x'', ''y'')) therefore measures exactly the relations mod the trivial relations. With more elements the higher-dimensional Koszul homologies measure the higher-level versions of this.
In the case that the elements ''x''1, ''x''2, ..., ''x''''n'' form a regular sequence, the higher homology modules of the Koszul complex are all zero.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Koszul complex」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.